

PCN 11773 – Additional information MIM module process change in Samsung Foundry: MIM HAH stack implementation on 32LP, 28LP and 28FD Technologies

WHAT is the change?

Metal Insulator Metal (MIM) capacitance insulator (dielectric) change from Ta2O5 material to HfO2/AI2O3/HfO2 (HAH) tri-layer for performance and throughput/capacity improvement

Layers (for MIM)	Parameters	Thick	Thick Var	ĸ
Units	Units	[A]	[A]	
Above MIM top plate (conformal)	Nitride	600	60	8.1
MIM top plate	TiN	550	55	
Dielectric between MIM plates	MIM diel	115	11	25
MIM bottom plate	TiN	300	45	
MIM bottom plate	AI	400	40	
Below MIM bottom plate	Oxide	1000	100	4.2

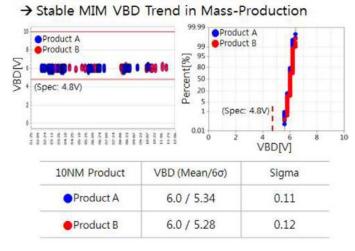
Process items	Current process	Current tool	New process	New tool
MIM Insulator (dielectric) Deposition	Ta ₂ O ₅ layer	Emeral3000	HfO ₂ /Al ₂ O ₃ /HfO ₂ (HAH) tri-layer	Pulsar

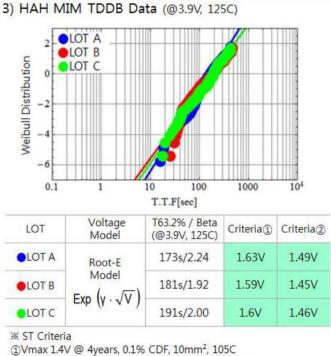
Samsung Foundry decided to qualify a new equipment on Line 32LP, 28LP and 28FD for performance and throughput/capacity improvement:

- Ta2O5(TAO) deposition tool out of production (only 3 chambers worldwide)
- Complex PM and parts delivery time higher for TAO
- Higher support on HAH stack, because used on advanced technology nodes (14/10nm)

	TAO (POR)	HAH (SF Proposal)	
Model	Emeral 3000	Pulsar	
Status	Out of production (3 chambers world wide)	Production (many)	
Chamber view	O Insulator Cas Line O Gas Plate	Chamber Disultation Disultation	
비고	Complex 43ea PM Parts Total 150ea Parts	Simple 15ea PM Parts Total 37ea Parts	

WHEN will this change occur?


New process plan to be implement in Fab on W1945 Foundry plan to remove Old tool on W1950


Wafer Level Qualification:

MIM capacitor with new process has been qualified through wafer level reliability test

- Extrinsic Breakdown (Vramp): No extrinsic breakdown found in other product Mass production
 - 2) HAH MIM Vramp Data (@0.2V/0.03s, 25C)

• Breakdown Life time Model (TDDB) on 3 lots: Passing Mission Profile criteria (Vmax > Vuse)

2Vmax 1.155V @10years, 0.1% CDF, 10mm², 125C

See Appendices for Qualification plan. Estimate Date of Final Qualification: W1945

APPENDICES:

APPENDIX 1 Qualification plan

APPENDIX 1: QUALIFICATION PLAN

Reliability Qualification Plan: MIM module process change in Samsung Foundry: MIM HAH stack implementation on 32LP, 28LP and 28FD Technologies

General Information		Lo	cations
Silicon process technology	CMOS28nm LP	Wafer fab location	Samsung Foundry
Affected products	H310 (Cannes 2.0)		

Objectives:

The objective of this qualification plan is to define the trials to validate the Metal Insulator Metal (MIM) capacitance insulator (dielectric) change from Ta2O5 material to HfO2/Al2O3/HfO2 (HAH) tri-layer for performance and throughput/capacity improvement at Samsung Foundry on 32LP, 28LP and 28FD Technologies

Estimate Date of Final Qualification: W1945

Description of the change:

Process items	Current process	Current tool	New process	New tool
MIM Insulator (dielectric) Deposition	Ta₂O₅ layer	Emeral3000	HfO ₂ /Al ₂ O ₃ /HfO ₂ (HAH) tri-layer	Pulsar

Strategy for qualification:

Focus on two Test Vehicles products worst case in term of MIM area and MIM voltage Vuse.

Product	Comments
Product A	MIM area: 3.77mm2 @ 1.0V
	MIM area: 19.92mm2 @ 1.1V
Product B	MIM area: 52.5 mm2 @ 0.70 V
H310	MIM area: 5.6 mm2 @ 1.0V

Lot definition and traceability:

Lot Nb	Product	Si Foundry
1	Product A	Samsung
2	Product A	Samsung
3	Product B	Samsung

Reliability Test Results:

Test	Test short descr	iption				
	Method	Conditions	SS/Lot	Lot n#	Duration	
3 IR	Reflow simulation	(3 times) with standard JEDEC profile				
	JESD22-A113		120	1	NA	
			120	2		
			60	3		
3 IR+TC	Temperature cycling test					
	JESD22-A104	Ta= -55/+125°C for Product A	30	1	1000 cy	
		Ta= -40°C/125°C for Product B	30	2		
		Steps: 0, 500, 1000 cycles	30	3		
3 IR+HTOL	High Temperature Operating Life test					
	JESD22-A108	Vnom + 10%	80	1	1000 hrs	
		Tj>135°C	80	2		
		Steps: 0, 500, 1000 hours	30	3		

Comment about Lot 3: Due to high device costs and board availability, only 30 samples used for HTOL trial.

CONFIDENTIALITY OBLIGATIONS:

This document contains confidential information; its distribution is submitted to ST authorization.

Disclosure of this document to any non-authorized party must be previously authorized by ST only under the provision of a signed NDA between ST and Customer and must be treat as strictly confidential.

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

Information in this document is intended as support for authorized communication between ST and Customer only, for internal discussions purposes.

In no event the information disclosed by ST to Customer here under can be used against ST, or in a claim brought in front of any Court or Jurisdiction.

At all times you will comply with the following securities rules:

- $\cdot \operatorname{Do}$ not copy or reproduce all or part of this document
- Keep this document locked away

• Further copies can be provided on a "need to know basis", Please contact your local ST Sales Office or document writer

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics International NV and/or its affiliates, registered in the U.S. and other countries

© 2017 STMicroelectronics International NV and/or its affiliates – All Rights Reserved www.st.com